

Name:

Place Value 404

Here on Earth it's always true that a day follows a day. But there is a place where yesterday always follows today. In a Dictionary!

Understanding Units (ones), tens, hundreds, thousands, etc What is the value of the underlined numeral. eg. 4 tens

1	59,360 =	16	51,512 =
2	45,968 =	(17)	37,382 =
3	84,367 =	(18)	91,046 =
4	19,029 =	(19)	13,134 =
5	47,984 =	20	14,290 =
6	99,429 =	21)	54,665 =
7	25,089 =	22	99,146 =
8	16,323 =	23	1,344 =
9	54,983 =	24)	6,320 =
10	82,030 =	25	90,081 =
1	91,887 =	26	16,809 =
(12)	53,550 =	27)	14,841 =
13	54,447 =	28	91,409 =
14	73,049 =	29	<u>6</u> 5,127 =
15	73,227 =	30	19,216 =

Name:

Place Value 404

Here on Earth it's always true that a day follows a day. But there is a place where yesterday always follows today. In a Dictionary!

Understanding Units (ones), tens, hundreds, thousands, etc What is the value of the underlined numeral. eg. 4 tens

1	59,360 =	9 thousands

- $^{(2)}$ 45,968 = 4 ten thousands
- ³ 84,367 = 3 hundreds
- ⁽⁴⁾ 19,029 = 9 thousands
- $^{(5)}$ 47,984 = 4 ten thousands
- ⁶ 99,429 = <u>2 tens</u>
- ⁽⁷⁾ 25,089 = 0 hundreds
- [®] 16,323 = 6 thousands
- ⁽⁹⁾ 54,983 = $\frac{8 \text{ tens}}{2}$
- ⁽¹⁰⁾ 82,030 = 0 ones
- ⁽¹⁾ 91,887 = 8 hundreds
- ⁽¹²⁾ 53,550 = $\frac{5 \text{ hundreds}}{5 \text{ hundreds}}$
- ⁽³⁾ <u>5</u>4,447 = <u>5 ten thousands</u>
- ⁽⁴⁾ 73,049 = 0 hundreds
- ⁽¹⁵⁾ 73,227 = 2 hundreds

- ⁽ⁱ⁾ 51,512 = 1 thousand ⁽ⁱ⁾ 37,382 = 7 thousands
- ⁽¹⁸⁾ 91,046 = 1 thousand
- ⁽⁹⁾ 13,134 = <u>1 hundred</u>
- ²⁰ 14,290 = <u>0 ones</u>
- ²¹⁾ 54,665 = 6 hundreds
- ⁽²²⁾ 99,146 = $\frac{6 \text{ ones}}{1000}$
- ²³ 1,344 = <u>3 hundreds</u>
- ²⁴ <u>6</u>,320 = <u>6 thousands</u>
- ²⁵ 90,081 = <u>0 hundreds</u>
- ²⁶ 16,809 = 0 tens
- (2) <u>14,841 = <u>1 ten thousand</u></u>
- ²⁸ 91,409 = <u>4 hundreds</u>
- ²⁹ <u>65,127 = 6 ten thousands</u>
 - 19,216 = 6 ones

(30)